A Placement Technique for Multiple-Voltage Design
نویسندگان
چکیده
A voltage-island architecture for systems-on-chip is an effective way to reduce active and static power. For such multiple supply designs, various layout architectures exist; however, placement algorithms that take advantage of a circuit rows style of implementation are not available to designers today. This paper presents two algorithms to place standard cells in a circuit rows style of implementation for dual-supply digital designs using double-height level converting flip-flops. Our results show significant improvement in terms of wirelength over a simple bi-partitioning scheme that is currently employed in manufactured designs. On average, we show a 21% wiring overhead for multiple-supply design using our new techniques compared to an 81% overhead under the bi-partitioning scheme. This paper represents a first work quantifying the physical design overhead of a dual-supply system in the context of multiple-supply aware placement algorithms.
منابع مشابه
Multi Objective Optimization Placement of DG Problem for Different Load Levels on Distribution Systems with Purpose Reduction Loss, Cost and Improving Voltage Profile Based on DAPSO Algorithm
Along with economic growth of countries which leads to their increased energy requirements,the problem of power quality and reliability of the networks have been more considered andin recent decades, we witnessed a noticeable growing trend of distributed generation sources(DG) in distribution networks. Occurrence of DG in distribution systems, in addition tochanging the utilization of these sys...
متن کاملSimultaneous Placement of Capacitor and DG in Distribution Networks Using Particle Swarm Optimization Algorithm
Nowadays, using distributed generation (DG) resources, such as wind and solar, also improving the voltage profile in distribution companies has been considered. As optimal placement and sizing of shunt capacitors become more prevalent, utilities want to determine the impact of the various capacitors placement in distribution systems. Locating and determining the optimal capacity of shunt capaci...
متن کاملOptimal Placement and Sizing of Multiple Renewable Distributed Generation Units Considering Load Variations Via Dragonfly Optimization Algorithm
The progression towards smart grids, integrating renewable energy resources, has increased the integration of distributed generators (DGs) into power distribution networks. However, several economic and technical challenges can result from the unsuitable incorporation of DGs in existing distribution networks. Therefore, optimal placement and sizing of DGs are of paramount importance to improve ...
متن کاملConverter-free multiple-voltage scaling techniques for low-powerCMOS digital design
Recent research has shown that voltage scaling is a very effective technique for low-power design. This paper describes a voltage scaling technique to minimize the power consumption of a combinational circuit. First, the converter-free multiple-voltage (CFMV) structures are proposed, including the p-type, the n-type, and the two-way CFMV structures. The CFMV structures make use of multiple supp...
متن کاملA Robust Control Design Technique for Discrete-Time Systems
A robust state feedback design subject to placement of the closed loop eigenvalues in a prescribed region of unit circle is presented. Quantitative measures of robustness and disturbance rejection are investigated. A stochastic optimization algorithm is used to effect trade-off between the free design parameters and to accomplish all the design criteria. A numerical example is given to illustra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006